N38 - Salts

	Turns into a	Hydrolyzes?
Strong Acid	Weak conjugate base	No
Weak Acid	Strong conjugate base	Yes
Strong Base	Weak conjugate acid	No
Weak Base	Strong conjugate acid	Yes

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak conjugate base	No	Neutral
Weak Acid	Strong conjugate base	Yes	Basic
Strong Base	Weak conjugate acid	No	Neutral
Weak Base	Strona conjugate acid	Yes	Acidic

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

$Ka_{(ion)} > Kb_{(ion)}$	Acidic
$Ka_{(ion)} < Kb_{(ion)}$	Basic
$Ka_{(ion)} = Kb_{(ion)}$	Neutral

Strength of Binary Acids

Strength of Oxyacids (and other similar)

High electronegativity of the <u>side group</u> pulls electron density AWAY from the bond involving Hydrogen. Bond is therefore weakened so it breaks more easily, therefore more acidic.

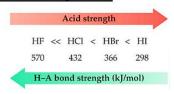
N38

	Turns into a	Hydrolyzes?
Strong Acid	Weak conjugate base	No
Weak Acid	Strong conjugate base	Yes
Strong Base	Weak conjugate acid	No
Weak Base	Strong conjugate acid	Yes

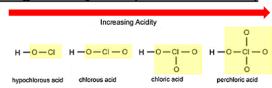
	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak conjugate base	No	Neutral
Weak Acid	Strong conjugate base	Yes	Basic
Strong Base	Weak conjugate acid	No	Neutral
Weak Base	Strong conjugate acid	Yes	Acidic

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

N38 - Salts


	Turns into a	Hydrolyzes?
Strong Acid	Weak conjugate base	No
Weak Acid	Strong conjugate base	Yes
Strong Base	Weak conjugate acid	No
Weak Base	Strong conjugate acid	Yes

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak conjugate base	No	Neutral
Weak Acid	Strong conjugate base	Yes	Basic
Strong Base	Weak conjugate acid	No	Neutral
Weak Base	Strong conjugate acid	Yes	Acidic


	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

$Ka_{(ion)} > Kb_{(ion)}$	Acidic
$Ka_{(ion)} < Kb_{(ion)}$	Basic
$Ka_{(ion)} = Kb_{(ion)}$	Neutral

Strength of Binary Acids

Strength of Oxyacids (and other similar)

High electronegativity of the <u>side group</u> pulls electron density AWAY from the bond involving Hydrogen. Bond is therefore weakened so it breaks more easily, therefore more acidic.

Strength of Binary Acids

Strength of Oxyacids (and other similar)

High electronegativity of the <u>side group</u> pulls electron density AWAY from the bond involving Hydrogen. Bond is therefore weakened so it breaks more easily, therefore more acidic.

$Ka_{(ion)} > Kb_{(ion)}$	Acidic
(a _(ion) < Kb _(ion)	Basic
$Ka_{(ion)} = Kb_{(ion)}$	Neutral